Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilities of Causation: Role of Observational Data (2210.08874v1)

Published 17 Oct 2022 in cs.AI

Abstract: Probabilities of causation play a crucial role in modern decision-making. Pearl defined three binary probabilities of causation, the probability of necessity and sufficiency (PNS), the probability of sufficiency (PS), and the probability of necessity (PN). These probabilities were then bounded by Tian and Pearl using a combination of experimental and observational data. However, observational data are not always available in practice; in such a case, Tian and Pearl's Theorem provided valid but less effective bounds using pure experimental data. In this paper, we discuss the conditions that observational data are worth considering to improve the quality of the bounds. More specifically, we defined the expected improvement of the bounds by assuming the observational distributions are uniformly distributed on their feasible interval. We further applied the proposed theorems to the unit selection problem defined by Li and Pearl.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)