Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Private Data Valuation and Fair Payment in Data Marketplaces (2210.08723v3)

Published 17 Oct 2022 in cs.CR

Abstract: Data valuation is an essential task in a data marketplace. It aims at fairly compensating data owners for their contribution. There is increasing recognition in the machine learning community that the Shapley value -- a foundational profit-sharing scheme in cooperative game theory -- has major potential to value data, because it uniquely satisfies basic properties for fair credit allocation and has been shown to be able to identify data sources that are useful or harmful to model performance. However, calculating the Shapley value requires accessing original data sources. It still remains an open question how to design a real-world data marketplace that takes advantage of the Shapley value-based data pricing while protecting privacy and allowing fair payments. In this paper, we propose the {\em first} prototype of a data marketplace that values data sources based on the Shapley value in a privacy-preserving manner and at the same time ensures fair payments. Our approach is enabled by a suite of innovations on both algorithm and system design. We firstly propose a Shapley value calculation algorithm that can be efficiently implemented via multiparty computation (MPC) circuits. The key idea is to learn a performance predictor that can directly predict model performance corresponding to an input dataset without performing actual training. We further optimize the MPC circuit design based on the structure of the performance predictor. We further incorporate fair payment into the MPC circuit to guarantee that the data that the buyer pays for is exactly the same as the one that has been valuated. Our experimental results show that the proposed new data valuation algorithm is as effective as the original expensive one. Furthermore, the customized MPC protocol is efficient and scalable.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube