Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Logical Relations for Partial Features and Automatic Differentiation Correctness (2210.08530v2)

Published 16 Oct 2022 in cs.PL, cs.LO, math.CT, and math.LO

Abstract: We present a simple technique for semantic, open logical relations arguments about languages with recursive types, which, as we show, follows from a principled foundation in categorical semantics. We demonstrate how it can be used to give a very straightforward proof of correctness of practical forward- and reverse-mode dual numbers style automatic differentiation (AD) on ML-family languages. The key idea is to combine it with a suitable open logical relations technique for reasoning about differentiable partial functions (a suitable lifting of the partiality monad to logical relations), which we introduce.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.