Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

ResAttUNet: Detecting Marine Debris using an Attention activated Residual UNet (2210.08506v1)

Published 16 Oct 2022 in cs.CV and eess.IV

Abstract: Currently, a significant amount of research has been done in field of Remote Sensing with the use of deep learning techniques. The introduction of Marine Debris Archive (MARIDA), an open-source dataset with benchmark results, for marine debris detection opened new pathways to use deep learning techniques for the task of debris detection and segmentation. This paper introduces a novel attention based segmentation technique that outperforms the existing state-of-the-art results introduced with MARIDA. The paper presents a novel spatial aware encoder and decoder architecture to maintain the contextual information and structure of sparse ground truth patches present in the images. The attained results are expected to pave the path for further research involving deep learning using remote sensing images. The code is available at https://github.com/sheikhazhanmohammed/SADMA.git

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Github Logo Streamline Icon: https://streamlinehq.com