Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Two-dimensional Sound Source Localization With Ad-hoc Microphone Arrays (2210.08484v1)

Published 16 Oct 2022 in eess.AS and cs.SD

Abstract: Conventional sound source localization methods are mostly based on a single microphone array that consists of multiple microphones. They are usually formulated as the estimation of the direction of arrival problem. In this paper, we propose a deep-learning-based end-to-end sound source localization method with ad-hoc microphone arrays, where an ad-hoc microphone array is a set of randomly distributed microphone arrays that collaborate with each other. It can produce two-dimensional locations of speakers with only a single microphone per node. Specifically, we divide a targeted indoor space into multiple local areas. We encode each local area by a one-hot code, therefore, the node and speaker locations can be represented by the one-hot codes. Accordingly, the sound source localization problem is formulated as such a classification task of recognizing the one-hot code of the speaker given the one hot codes of the microphone nodes and their speech recordings. An end-to-end spatial-temporal deep model is designed for the classification problem. It utilizes a spatial-temporal attention architecture with a fusion layer inserted in the middle of the architecture, which is able to handle arbitrarily different numbers of microphone nodes during the model training and test. Experimental results show that the proposed method yields good performance in highly reverberant and noisy environments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.