Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

TLDW: Extreme Multimodal Summarisation of News Videos (2210.08481v1)

Published 16 Oct 2022 in cs.CV, cs.CL, and cs.MM

Abstract: Multimodal summarisation with multimodal output is drawing increasing attention due to the rapid growth of multimedia data. While several methods have been proposed to summarise visual-text contents, their multimodal outputs are not succinct enough at an extreme level to address the information overload issue. To the end of extreme multimodal summarisation, we introduce a new task, eXtreme Multimodal Summarisation with Multimodal Output (XMSMO) for the scenario of TL;DW - Too Long; Didn't Watch, akin to TL;DR. XMSMO aims to summarise a video-document pair into a summary with an extremely short length, which consists of one cover frame as the visual summary and one sentence as the textual summary. We propose a novel unsupervised Hierarchical Optimal Transport Network (HOT-Net) consisting of three components: hierarchical multimodal encoders, hierarchical multimodal fusion decoders, and optimal transport solvers. Our method is trained, without using reference summaries, by optimising the visual and textual coverage from the perspectives of the distance between the semantic distributions under optimal transport plans. To facilitate the study on this task, we collect a large-scale dataset XMSMO-News by harvesting 4,891 video-document pairs. The experimental results show that our method achieves promising performance in terms of ROUGE and IoU metrics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com