Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decoupling Deep Learning for Interpretable Image Recognition (2210.08336v3)

Published 15 Oct 2022 in cs.CV

Abstract: The interpretability of neural networks has recently received extensive attention. Previous prototype-based explainable networks involved prototype activation in both reasoning and interpretation processes, requiring specific explainable structures for the prototype, thus making the network less accurate as it gains interpretability. Therefore, the decoupling prototypical network (DProtoNet) was proposed to avoid this problem. This new model contains encoder, inference, and interpretation modules. As regards the encoder module, unrestricted feature masks were presented to generate expressive features and prototypes. Regarding the inference module, a multi-image prototype learning method was introduced to update prototypes so that the network can learn generalized prototypes. Finally, concerning the interpretation module, a multiple dynamic masks (MDM) decoder was suggested to explain the neural network, which generates heatmaps using the consistent activation of the original image and mask image at the detection nodes of the network. It decouples the inference and interpretation modules of a prototype-based network by avoiding the use of prototype activation to explain the network's decisions in order to simultaneously improve the accuracy and interpretability of the neural network. The multiple public general and medical datasets were tested, and the results confirmed that our method could achieve a 5% improvement in accuracy and state-of-the-art interpretability compared with previous methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.