Improving Your Graph Neural Networks: A High-Frequency Booster (2210.08251v2)
Abstract: Graph neural networks (GNNs) hold the promise of learning efficient representations of graph-structured data, and one of its most important applications is semi-supervised node classification. However, in this application, GNN frameworks tend to fail due to the following issues: over-smoothing and heterophily. The most popular GNNs are known to be focused on the message-passing framework, and recent research shows that these GNNs are often bounded by low-pass filters from a signal processing perspective. We thus incorporate high-frequency information into GNNs to alleviate this genetic problem. In this paper, we argue that the complement of the original graph incorporates a high-pass filter and propose Complement Laplacian Regularization (CLAR) for an efficient enhancement of high-frequency components. The experimental results demonstrate that CLAR helps GNNs tackle over-smoothing, improving the expressiveness of heterophilic graphs, which adds up to 3.6% improvement over popular baselines and ensures topological robustness.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.