Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A sparse spectral method for fractional differential equations in one-spatial dimension (2210.08247v3)

Published 15 Oct 2022 in math.NA and cs.NA

Abstract: We develop a sparse spectral method for a class of fractional differential equations, posed on $\mathbb{R}$, in one dimension. These equations can include sqrt-Laplacian, Hilbert, derivative and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on $[-1,1]$ whereas the latter have global support. The global approximation space can contain different affine transformations of the basis, mapping $[-1,1]$ to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving $K$ independent sparse linear systems of size $\mathcal{O}(n)\times \mathcal{O}(n)$, with $\mathcal{O}(n)$ nonzero entries, where $K$ is the number of different intervals and $n$ is the highest polynomial degree contained in the sum space. This results in an $\mathcal{O}(n)$ complexity solve. Applications to fractional heat and wave equations are considered.

Citations (4)

Summary

We haven't generated a summary for this paper yet.