Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum Circuits (2210.08190v1)

Published 15 Oct 2022 in quant-ph and cs.AR

Abstract: Variational Quantum Algorithms (VQA) are promising to demonstrate quantum advantages on near-term devices. Designing ansatz, a variational circuit with parameterized gates, is of paramount importance for VQA as it lays the foundation for parameter optimizations. Due to the large noise on Noisy-Intermediate Scale Quantum (NISQ) machines, considering circuit size and real device noise in the ansatz design process is necessary. Unfortunately, recent works on ansatz design either consider no noise impact or only treat the real device as a black box with no specific noise information. In this work, we propose to open the black box by designing specific ansatz tailored for the qubit topology on target machines. Specifically, we propose a bottom-up approach to generate topology-specific ansatz. Firstly, we generate topology-compatible sub-circuits with desirable properties such as high expressibility and entangling capability. Then, the sub-circuits are combined together to form an initial ansatz. We further propose circuits stitching to solve the sparse connectivity issue between sub-circuits, and dynamic circuit growing to improve the accuracy. The ansatz constructed with this method is highly flexible and thus we can explore a much larger design space than previous state-of-the-art method in which all ansatz candidates are strict subsets of a pre-defined large ansatz. We use a popular VQA algorithm - Quantum Neural Networks (QNN) for Machine Learning (ML) task as the benchmarks. Experiments on 14 ML tasks show that under the same performance, the TopGen-searched ansatz can reduce the circuit depth and the number of CNOT gates by up to 2 * and 4 * respectively. Experiments on three real quantum machines demonstrate on average 17% accuracy improvements over baselines.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.