Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery (2210.07754v1)

Published 14 Oct 2022 in cs.IT, cs.CC, math.CO, and math.IT

Abstract: In this work we consider the list-decodability and list-recoverability of arbitrary $q$-ary codes, for all integer values of $q\geq 2$. A code is called $(p,L)q$-list-decodable if every radius $pn$ Hamming ball contains less than $L$ codewords; $(p,\ell,L)_q$-list-recoverability is a generalization where we place radius $pn$ Hamming balls on every point of a combinatorial rectangle with side length $\ell$ and again stipulate that there be less than $L$ codewords. Our main contribution is to precisely calculate the maximum value of $p$ for which there exist infinite families of positive rate $(p,\ell,L)_q$-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by $p$, we in fact show that codes correcting a $p_+\varepsilon$ fraction of errors must have size $O_{\varepsilon}(1)$, i.e., independent of $n$. Such a result is typically referred to as a ``Plotkin bound.'' To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a $p_*-\varepsilon$ fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the $q$-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for $q$-ary list-decoding; however, we point out that this earlier proof is flawed.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.