Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

End-to-end joint optimization of metasurface and image processing for compact snapshot hyperspectral imaging (2210.07684v1)

Published 14 Oct 2022 in physics.optics and eess.IV

Abstract: Traditional snapshot hyperspectral imaging systems generally require multiple refractive-optics-based elements to modulate light, resulting in bulky framework. In pursuit of a more compact form factor, a metasurface-based snapshot hyperspectral imaging system, which achieves joint optimization of metasurface and image processing, is proposed in this paper. The unprecedented light manipulation capabilities of metasurfaces are used in conjunction with neural networks to encode and decode light fields for better hyperspectral imaging. Specifically, the extremely strong dispersion of metasurfaces is exploited to distinguish spectral information, and a neural network based on spectral priors is applied for hyperspectral image reconstruction. By constructing a fully differentiable model of metasurface-based hyperspectral imaging, the front-end metasurface phase distribution and the back-end recovery network parameters can be jointly optimized. This method achieves high-quality hyperspectral reconstruction results numerically, outperforming separation optimization methods. The proposed system holds great potential for miniaturization and portability of hyperspectral imaging systems.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.