Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mention Annotations Alone Enable Efficient Domain Adaptation for Coreference Resolution (2210.07602v2)

Published 14 Oct 2022 in cs.CL

Abstract: Although recent neural models for coreference resolution have led to substantial improvements on benchmark datasets, transferring these models to new target domains containing out-of-vocabulary spans and requiring differing annotation schemes remains challenging. Typical approaches involve continued training on annotated target-domain data, but obtaining annotations is costly and time-consuming. We show that annotating mentions alone is nearly twice as fast as annotating full coreference chains. Accordingly, we propose a method for efficiently adapting coreference models, which includes a high-precision mention detection objective and requires annotating only mentions in the target domain. Extensive evaluation across three English coreference datasets: CoNLL-2012 (news/conversation), i2b2/VA (medical notes), and previously unstudied child welfare notes, reveals that our approach facilitates annotation-efficient transfer and results in a 7-14% improvement in average F1 without increasing annotator time.

Citations (5)

Summary

We haven't generated a summary for this paper yet.