Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation (2210.07577v1)

Published 14 Oct 2022 in cs.CV

Abstract: Depth-aware video panoptic segmentation tackles the inverse projection problem of restoring panoptic 3D point clouds from video sequences, where the 3D points are augmented with semantic classes and temporally consistent instance identifiers. We propose a novel solution with a multi-task network that performs monocular depth estimation and video panoptic segmentation. Since acquiring ground truth labels for both depth and image segmentation has a relatively large cost, we leverage the power of unlabeled video sequences with self-supervised monocular depth estimation and semi-supervised learning from pseudo-labels for video panoptic segmentation. To further improve the depth prediction, we introduce panoptic-guided depth losses and a novel panoptic masking scheme for moving objects to avoid corrupting the training signal. Extensive experiments on the Cityscapes-DVPS and SemKITTI-DVPS datasets demonstrate that our model with the proposed improvements achieves competitive results and fast inference speed.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.