Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Polycentric Clustering and Structural Regularization for Source-free Unsupervised Domain Adaptation (2210.07463v1)

Published 14 Oct 2022 in cs.CV

Abstract: Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain. Most existing methods assign pseudo-labels to the target data by generating feature prototypes. However, due to the discrepancy in the data distribution between the source domain and the target domain and category imbalance in the target domain, there are severe class biases in the generated feature prototypes and noisy pseudo-labels. Besides, the data structure of the target domain is often ignored, which is crucial for clustering. In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy. Firstly, an inter-class balanced sampling strategy is proposed to generate representative feature prototypes for each class. Furthermore, k-means clustering is introduced to generate multiple clustering centers for each class in the target domain to obtain robust pseudo-labels. Finally, to enhance the model's generalization, structural regularization is introduced for the target domain. Extensive experiments on three UDA benchmark datasets show that our method performs better or similarly against the other state of the art methods, demonstrating our approach's superiority for visual domain adaptation problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.