Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Efficiently Plan Robust Frictional Multi-Object Grasps (2210.07420v3)

Published 13 Oct 2022 in cs.RO, cs.AI, and cs.LG

Abstract: We consider a decluttering problem where multiple rigid convex polygonal objects rest in randomly placed positions and orientations on a planar surface and must be efficiently transported to a packing box using both single and multi-object grasps. Prior work considered frictionless multi-object grasping. In this paper, we introduce friction to increase the number of potential grasps for a given group of objects, and thus increase picks per hour. We train a neural network using real examples to plan robust multi-object grasps. In physical experiments, we find a 13.7% increase in success rate, a 1.6x increase in picks per hour, and a 6.3x decrease in grasp planning time compared to prior work on multi-object grasping. Compared to single-object grasping, we find a 3.1x increase in picks per hour.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com