Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonlinear approximation of high-dimensional anisotropic analytic functions (2210.07067v1)

Published 13 Oct 2022 in math.NA and cs.NA

Abstract: Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest in a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain, $Y:=[-1,1]\mathbb{N}$. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al, 2020, arXiv:2005.02565) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity. In this way we show both where the theory developed in (Bonito et al 2020) depends on being in the setting of parametric PDEs with affine diffusion coefficients, and also expand the previous result to include more general types of parametric PDEs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.