Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Online matching with delays and stochastic arrival times (2210.07018v3)

Published 13 Oct 2022 in cs.DS

Abstract: This paper presents a new research direction for the Min-cost Perfect Matching with Delays (MPMD) - a problem introduced by Emek et al. (STOC'16). In the original version of this problem, we are given an $n$-point metric space, where requests arrive in an online fashion. The goal is to minimise the matching cost for an even number of requests. However, contrary to traditional online matching problems, a request does not have to be paired immediately at the time of its arrival. Instead, the decision of whether to match a request can be postponed for time $t$ at a delay cost of $t$. For this reason, the goal of the MPMD is to minimise the overall sum of distance and delay costs. Interestingly, for adversarially generated requests, no online algorithm can achieve a competitive ratio better than $O(\log n/\log \log n)$ (Ashlagi et al., APPROX/RANDOM'17). Here, we consider a stochastic version of the MPMD problem where the input requests follow a Poisson arrival process. For such a problem, we show that the above lower bound can be improved by presenting two deterministic online algorithms, which, in expectation, are constant-competitive. The first one is a simple greedy algorithm that matches any two requests once the sum of their delay costs exceeds their connection cost, i.e., the distance between them. The second algorithm builds on the tools used to analyse the first one in order to obtain even better performance guarantees. This result is rather surprising as the greedy approach for the adversarial model achieves a competitive ratio of $\Omega(m{\log \frac{3}{2}+\varepsilon})$, where $m$ denotes the number of requests served (Azar et al., TOCS'20). Finally, we prove that it is possible to obtain similar results for the general case when the delay cost follows an arbitrary positive and non-decreasing function, as well as for the MPMD variant with penalties to clear pending requests.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.