Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Task Meta Learning: learn how to adapt to unseen tasks (2210.06989v4)

Published 13 Oct 2022 in cs.CV

Abstract: This work proposes Multi-task Meta Learning (MTML), integrating two learning paradigms Multi-Task Learning (MTL) and meta learning, to bring together the best of both worlds. In particular, it focuses simultaneous learning of multiple tasks, an element of MTL and promptly adapting to new tasks, a quality of meta learning. It is important to highlight that we focus on heterogeneous tasks, which are of distinct kind, in contrast to typically considered homogeneous tasks (e.g., if all tasks are classification or if all tasks are regression tasks). The fundamental idea is to train a multi-task model, such that when an unseen task is introduced, it can learn in fewer steps whilst offering a performance at least as good as conventional single task learning on the new task or inclusion within the MTL. By conducting various experiments, we demonstrate this paradigm on two datasets and four tasks: NYU-v2 and the taskonomy dataset for which we perform semantic segmentation, depth estimation, surface normal estimation, and edge detection. MTML achieves state-of-the-art results for three out of four tasks for the NYU-v2 dataset and two out of four for the taskonomy dataset. In the taskonomy dataset, it was discovered that many pseudo-labeled segmentation masks lacked classes that were expected to be present in the ground truth; however, our MTML approach was found to be effective in detecting these missing classes, delivering good qualitative results. While, quantitatively its performance was affected due to the presence of incorrect ground truth labels. The the source code for reproducibility can be found at https://github.com/ricupa/MTML-learn-how-to-adapt-to-unseen-tasks.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com