Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multilingual Zero Resource Speech Recognition Base on Self-Supervise Pre-Trained Acoustic Models (2210.06936v1)

Published 13 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Labeled audio data is insufficient to build satisfying speech recognition systems for most of the languages in the world. There have been some zero-resource methods trying to perform phoneme or word-level speech recognition without labeled audio data of the target language, but the error rate of these methods is usually too high to be applied in real-world scenarios. Recently, the representation ability of self-supervise pre-trained models has been found to be extremely beneficial in zero-resource phoneme recognition. As far as we are concerned, this paper is the first attempt to extend the use of pre-trained models into word-level zero-resource speech recognition. This is done by fine-tuning the pre-trained models on IPA phoneme transcriptions and decoding with a LLM trained on extra texts. Experiments on Wav2vec 2.0 and HuBERT models show that this method can achieve less than 20% word error rate on some languages, and the average error rate on 8 languages is 33.77%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.