Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Explainability of Natural Language Processing Deep Models (2210.06929v1)

Published 13 Oct 2022 in cs.CL and cs.HC

Abstract: While there has been a recent explosion of work on ExplainableAI ExAI on deep models that operate on imagery and tabular data, textual datasets present new challenges to the ExAI community. Such challenges can be attributed to the lack of input structure in textual data, the use of word embeddings that add to the opacity of the models and the difficulty of the visualization of the inner workings of deep models when they are trained on textual data. Lately, methods have been developed to address the aforementioned challenges and present satisfactory explanations on NLP models. However, such methods are yet to be studied in a comprehensive framework where common challenges are properly stated and rigorous evaluation practices and metrics are proposed. Motivated to democratize ExAI methods in the NLP field, we present in this work a survey that studies model-agnostic as well as model-specific explainability methods on NLP models. Such methods can either develop inherently interpretable NLP models or operate on pre-trained models in a post-hoc manner. We make this distinction and we further decompose the methods into three categories according to what they explain: (1) word embeddings (input-level), (2) inner workings of NLP models (processing-level) and (3) models' decisions (output-level). We also detail the different evaluation approaches interpretability methods in the NLP field. Finally, we present a case-study on the well-known neural machine translation in an appendix and we propose promising future research directions for ExAI in the NLP field.

Citations (65)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube