Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dirichlet process mixture models for non-stationary data streams (2210.06872v1)

Published 13 Oct 2022 in stat.ML and cs.LG

Abstract: In recent years, we have seen a handful of work on inference algorithms over non-stationary data streams. Given their flexibility, Bayesian non-parametric models are a good candidate for these scenarios. However, reliable streaming inference under the concept drift phenomenon is still an open problem for these models. In this work, we propose a variational inference algorithm for Dirichlet process mixture models. Our proposal deals with the concept drift by including an exponential forgetting over the prior global parameters. Our algorithm allows to adapt the learned model to the concept drifts automatically. We perform experiments in both synthetic and real data, showing that the proposed model is competitive with the state-of-the-art algorithms in the density estimation problem, and it outperforms them in the clustering problem.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.