Approximate Discrete Entropy Monotonicity for Log-Concave Sums (2210.06624v2)
Abstract: It is proven that a conjecture of Tao (2010) holds true for log-concave random variables on the integers: For every $n \geq 1$, if $X_1,\ldots,X_n$ are i.i.d. integer-valued, log-concave random variables, then $$ H(X_1+\cdots+X_{n+1}) \geq H(X_1+\cdots+X_{n}) + \frac{1}{2}\log{\Bigl(\frac{n+1}{n}\Bigr)} - o(1) $$ as $H(X_1) \to \infty$, where $H$ denotes the (discrete) Shannon entropy. The problem is reduced to the continuous setting by showing that if $U_1,\ldots,U_n$ are independent continuous uniforms on $(0,1)$, then $$ h(X_1+\cdots+X_n + U_1+\cdots+U_n) = H(X_1+\cdots+X_n) + o(1) $$ as $H(X_1) \to \infty$, where $h$ stands for the differential entropy. Explicit bounds for the $o(1)$-terms are provided.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.