Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Radiology Report Generation Systems by Removing Hallucinated References to Non-existent Priors (2210.06340v2)

Published 27 Sep 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Current deep learning models trained to generate radiology reports from chest radiographs are capable of producing clinically accurate, clear, and actionable text that can advance patient care. However, such systems all succumb to the same problem: making hallucinated references to non-existent prior reports. Such hallucinations occur because these models are trained on datasets of real-world patient reports that inherently refer to priors. To this end, we propose two methods to remove references to priors in radiology reports: (1) a GPT-3-based few-shot approach to rewrite medical reports without references to priors; and (2) a BioBERT-based token classification approach to directly remove words referring to priors. We use the aforementioned approaches to modify MIMIC-CXR, a publicly available dataset of chest X-rays and their associated free-text radiology reports; we then retrain CXR-RePaiR, a radiology report generation system, on the adapted MIMIC-CXR dataset. We find that our re-trained model--which we call CXR-ReDonE--outperforms previous report generation methods on clinical metrics, achieving an average BERTScore of 0.2351 (2.57% absolute improvement). We expect our approach to be broadly valuable in enabling current radiology report generation systems to be more directly integrated into clinical pipelines.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.