Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Semantic Cross Attention for Few-shot Learning (2210.06311v1)

Published 12 Oct 2022 in cs.CV and cs.LG

Abstract: Few-shot learning (FSL) has attracted considerable attention recently. Among existing approaches, the metric-based method aims to train an embedding network that can make similar samples close while dissimilar samples as far as possible and achieves promising results. FSL is characterized by using only a few images to train a model that can generalize to novel classes in image classification problems, but this setting makes it difficult to learn the visual features that can identify the images' appearance variations. The model training is likely to move in the wrong direction, as the images in an identical semantic class may have dissimilar appearances, whereas the images in different semantic classes may share a similar appearance. We argue that FSL can benefit from additional semantic features to learn discriminative feature representations. Thus, this study proposes a multi-task learning approach to view semantic features of label text as an auxiliary task to help boost the performance of the FSL task. Our proposed model uses word-embedding representations as semantic features to help train the embedding network and a semantic cross-attention module to bridge the semantic features into the typical visual modal. The proposed approach is simple, but produces excellent results. We apply our proposed approach to two previous metric-based FSL methods, all of which can substantially improve performance. The source code for our model is accessible from github.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube