Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A review on Epileptic Seizure Detection using Machine Learning (2210.06292v1)

Published 5 Oct 2022 in eess.SP and cs.LG

Abstract: Epilepsy is a neurological brain disorder which life threatening and gives rise to recurrent seizures that are unprovoked. It occurs due to the abnormal chemical changes in our brain. Over the course of many years, studies have been conducted to support automatic diagnosis of epileptic seizures for the ease of clinicians. For that, several studies entail the use of machine learning methods for the early prediction of epileptic seizures. Mainly, feature extraction methods have been used to extract the right features from the EEG data generated by the EEG machine and then various machine learning classifiers are used for the classification process. This study provides a systematic literature review of feature selection process as well as the classification performance. This study was limited to the finding of most used feature extraction methods and the classifiers used for accurate classification of normal to epileptic seizures. The existing literature was examined from well-known repositories such as MPDI, IEEEXplore, Wiley, Elsevier, ACM, Springerlink and others. Furthermore, a taxonomy was created that recapitulates the state-of-the-art used solutions for this problem. We also studied the nature of different benchmark and unbiased datasets and gave a rigorous analysis of the working of classifiers. Finally, we concluded the research by presenting the gaps, challenges and opportunities which can further help researchers in prediction of epileptic seizure

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.