Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

JukeDrummer: Conditional Beat-aware Audio-domain Drum Accompaniment Generation via Transformer VQ-VAE (2210.06007v2)

Published 12 Oct 2022 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: This paper proposes a model that generates a drum track in the audio domain to play along to a user-provided drum-free recording. Specifically, using paired data of drumless tracks and the corresponding human-made drum tracks, we train a Transformer model to improvise the drum part of an unseen drumless recording. We combine two approaches to encode the input audio. First, we train a vector-quantized variational autoencoder (VQ-VAE) to represent the input audio with discrete codes, which can then be readily used in a Transformer. Second, using an audio-domain beat tracking model, we compute beat-related features of the input audio and use them as embeddings in the Transformer. Instead of generating the drum track directly as waveforms, we use a separate VQ-VAE to encode the mel-spectrogram of a drum track into another set of discrete codes, and train the Transformer to predict the sequence of drum-related discrete codes. The output codes are then converted to a mel-spectrogram with a decoder, and then to the waveform with a vocoder. We report both objective and subjective evaluations of variants of the proposed model, demonstrating that the model with beat information generates drum accompaniment that is rhythmically and stylistically consistent with the input audio.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.