Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Momentum Accelerated Adaptive Cubic Regularization Method for Nonconvex Optimization (2210.05987v1)

Published 12 Oct 2022 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: The cubic regularization method (CR) and its adaptive version (ARC) are popular Newton-type methods in solving unconstrained non-convex optimization problems, due to its global convergence to local minima under mild conditions. The main aim of this paper is to develop a momentum-accelerated adaptive cubic regularization method (ARCm) to improve the convergent performance. With the proper choice of momentum step size, we show the global convergence of ARCm and the local convergence can also be guaranteed under the \KL property. Such global and local convergence can also be established when inexact solvers with low computational costs are employed in the iteration procedure. Numerical results for non-convex logistic regression and robust linear regression models are reported to demonstrate that the proposed ARCm significantly outperforms state-of-the-art cubic regularization methods (e.g., CR, momentum-based CR, ARC) and the trust region method. In particular, the number of iterations required by ARCm is less than 10\% to 50\% required by the most competitive method (ARC) in the experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.