Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Planning for Car-Like Robotic Swarm in Cluttered Environments (2210.05863v2)

Published 12 Oct 2022 in cs.RO

Abstract: Robot swarm is a hot spot in robotic research community. In this paper, we propose a decentralized framework for car-like robotic swarm which is capable of real-time planning in cluttered environments. In this system, path finding is guided by environmental topology information to avoid frequent topological change, and search-based speed planning is leveraged to escape from infeasible initial value's local minima. Then spatial-temporal optimization is employed to generate a safe, smooth and dynamically feasible trajectory. During optimization, the trajectory is discretized by fixed time steps. Penalty is imposed on the signed distance between agents to realize collision avoidance, and differential flatness cooperated with limitation on front steer angle satisfies the non-holonomic constraints. With trajectories broadcast to the wireless network, agents are able to check and prevent potential collisions. We validate the robustness of our system in simulation and real-world experiments. Code will be released as open-source packages.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu, S. Shen, et al., “Differential flatness-based trajectory planning for autonomous vehicles,” arXiv preprint arXiv:2208.13160, 2022.
  2. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017, pp. 1–16.
  3. Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization approach to smooth trajectories for motion planning with car-like robots,” in 2015 54th IEEE conference on decision and control (CDC).   IEEE, 2015, pp. 835–842.
  4. J. Zhou, R. He, Y. Wang, S. Jiang, Z. Zhu, J. Hu, J. Miao, and Q. Luo, “Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 439–446, 2020.
  5. X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 972–983, 2020.
  6. B. Li, T. Acarman, Y. Zhang, Y. Ouyang, C. Yaman, Q. Kong, X. Zhong, and X. Peng, “Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles: A lightweight iterative framework,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  7. J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision avoidance for nonholonomic robots,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 404–420, 2018.
  8. J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart, “Reciprocal collision avoidance for multiple car-like robots,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 360–366.
  9. Y. Ouyang, B. Li, Y. Zhang, T. Acarman, Y. Guo, and T. Zhang, “Fast and optimal trajectory planning for multiple vehicles in a nonconvex and cluttered environment: Benchmarks, methodology, and experiments,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 10 746–10 752.
  10. B. Li, Y. Ouyang, Y. Zhang, T. Acarman, Q. Kong, and Z. Shao, “Optimal cooperative maneuver planning for multiple nonholonomic robots in a tiny environment via adaptive-scaling constrained optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1511–1518, 2021.
  11. I. M. Delimpaltadakis, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Decentralized platooning with obstacle avoidance for car-like vehicles with limited sensing,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 835–840, 2018.
  12. L. Jaillet and T. Siméon, “Path deformation roadmaps: Compact graphs with useful cycles for motion planning,” The International Journal of Robotics Research, vol. 27, no. 11-12, pp. 1175–1188, 2008.
  13. B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time uav replanning using guided gradient-based optimization and topological paths,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 1208–1214.
  14. B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.
  15. X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4101–4107.
  16. J. Cheng, Y. Chen, Q. Zhang, L. Gan, C. Liu, and M. Liu, “Real-time trajectory planning for autonomous driving with gaussian process and incremental refinement,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8999–9005.
  17. H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and Q. Kong, “Baidu apollo em motion planner,” arXiv preprint arXiv:1807.08048, 2018.
  18. C. Liu, W. Zhan, and M. Tomizuka, “Speed profile planning in dynamic environments via temporal optimization,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 154–159.
  19. W. Xu and J. M. Dolan, “Speed planning in dynamic environments over a fixed path for autonomous vehicles,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 3321–3327.
  20. J. Johnson and K. Hauser, “Optimal acceleration-bounded trajectory planning in dynamic environments along a specified path,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 2035–2041.
  21. ——, “Optimal longitudinal control planning with moving obstacles,” in 2013 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2013, pp. 605–611.
  22. J. Li, X. Xie, H. Ma, X. Liu, and J. He, “Speed planning using bezier polynomials with trapezoidal corridors,” arXiv preprint arXiv:2104.11655, 2021.
  23. D. González, V. Milanés, J. Pérez, and F. Nashashibi, “Speed profile generation based on quintic bézier curves for enhanced passenger comfort,” in 2016 IEEE 19th international conference on intelligent transportation systems (ITSC).   IEEE, 2016, pp. 814–819.
  24. D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for autonomous vehicles in unknown semi-structured environments,” The international journal of robotics research, vol. 29, no. 5, pp. 485–501, 2010.
  25. Z. Artstein, “Discrete and continuous bang-bang and facial spaces or: Look for the extreme points,” SIAM Review, vol. 22, no. 2, pp. 172–185, 1980. [Online]. Available: https://doi.org/10.1137/1022026
  26. S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle dynamics control-a flatness based approach,” in Proceedings of the 44th IEEE Conference on Decision and Control.   IEEE, 2005, pp. 6492–6497.
  27. Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory optimization for multicopters,” IEEE Transactions on Robotics, 2022.
  28. K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,” AIChE Journal, vol. 39, no. 2, pp. 262–287, 1993.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Changjia Ma (3 papers)
  2. Zhichao Han (30 papers)
  3. Tingrui Zhang (6 papers)
  4. Jingping Wang (4 papers)
  5. Long Xu (41 papers)
  6. Chengyang Li (22 papers)
  7. Chao Xu (283 papers)
  8. Fei Gao (458 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com