Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A unified model for continuous conditional video prediction (2210.05810v2)

Published 11 Oct 2022 in cs.CV

Abstract: Different conditional video prediction tasks, like video future frame prediction and video frame interpolation, are normally solved by task-related models even though they share many common underlying characteristics. Furthermore, almost all conditional video prediction models can only achieve discrete prediction. In this paper, we propose a unified model that addresses these two issues at the same time. We show that conditional video prediction can be formulated as a neural process, which maps input spatio-temporal coordinates to target pixel values given context spatio-temporal coordinates and context pixel values. Specifically, we feed the implicit neural representation of coordinates and context pixel features into a Transformer-based non-autoregressive conditional video prediction model. Our task-specific models outperform previous work for video future frame prediction and video interpolation on multiple datasets. Importantly, the model is able to interpolate or predict with an arbitrary high frame rate, i.e., continuous prediction. Our source code is available at \url{https://npvp.github.io}.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.