Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Toward Sustainable Continual Learning: Detection and Knowledge Repurposing of Similar Tasks (2210.05751v1)

Published 11 Oct 2022 in cs.CV and cs.LG

Abstract: Most existing works on continual learning (CL) focus on overcoming the catastrophic forgetting (CF) problem, with dynamic models and replay methods performing exceptionally well. However, since current works tend to assume exclusivity or dissimilarity among learning tasks, these methods require constantly accumulating task-specific knowledge in memory for each task. This results in the eventual prohibitive expansion of the knowledge repository if we consider learning from a long sequence of tasks. In this work, we introduce a paradigm where the continual learner gets a sequence of mixed similar and dissimilar tasks. We propose a new continual learning framework that uses a task similarity detection function that does not require additional learning, with which we analyze whether there is a specific task in the past that is similar to the current task. We can then reuse previous task knowledge to slow down parameter expansion, ensuring that the CL system expands the knowledge repository sublinearly to the number of learned tasks. Our experiments show that the proposed framework performs competitively on widely used computer vision benchmarks such as CIFAR10, CIFAR100, and EMNIST.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.