Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 70 tok/s
Gemini 2.5 Flash 169 tok/s Pro
Gemini 2.5 Pro 47 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

An Experimental Study on Private Aggregation of Teacher Ensemble Learning for End-to-End Speech Recognition (2210.05614v2)

Published 11 Oct 2022 in cs.SD, cs.LG, cs.NE, and eess.AS

Abstract: Differential privacy (DP) is one data protection avenue to safeguard user information used for training deep models by imposing noisy distortion on privacy data. Such a noise perturbation often results in a severe performance degradation in automatic speech recognition (ASR) in order to meet a privacy budget $\varepsilon$. Private aggregation of teacher ensemble (PATE) utilizes ensemble probabilities to improve ASR accuracy when dealing with the noise effects controlled by small values of $\varepsilon$. We extend PATE learning to work with dynamic patterns, namely speech utterances, and perform a first experimental demonstration that it prevents acoustic data leakage in ASR training. We evaluate three end-to-end deep models, including LAS, hybrid CTC/attention, and RNN transducer, on the open-source LibriSpeech and TIMIT corpora. PATE learning-enhanced ASR models outperform the benchmark DP-SGD mechanisms, especially under strict DP budgets, giving relative word error rate reductions between 26.2% and 27.5% for an RNN transducer model evaluated with LibriSpeech. We also introduce a DP-preserving ASR solution for pretraining on public speech corpora.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.