Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unlabelled Sample Compression Schemes for Intersection-Closed Classes and Extremal Classes (2210.05455v1)

Published 11 Oct 2022 in cs.LG and cs.DM

Abstract: The sample compressibility of concept classes plays an important role in learning theory, as a sufficient condition for PAC learnability, and more recently as an avenue for robust generalisation in adaptive data analysis. Whether compression schemes of size $O(d)$ must necessarily exist for all classes of VC dimension $d$ is unknown, but conjectured to be true by Warmuth. Recently Chalopin, Chepoi, Moran, and Warmuth (2018) gave a beautiful unlabelled sample compression scheme of size VC dimension for all maximum classes: classes that meet the Sauer-Shelah-Perles Lemma with equality. They also offered a counterexample to compression schemes based on a promising approach known as corner peeling. In this paper we simplify and extend their proof technique to deal with so-called extremal classes of VC dimension $d$ which contain maximum classes of VC dimension $d-1$. A criterion is given which would imply that all extremal classes admit unlabelled compression schemes of size $d$. We also prove that all intersection-closed classes with VC dimension $d$ admit unlabelled compression schemes of size at most $11d$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.