On the Use of Semantically-Aligned Speech Representations for Spoken Language Understanding (2210.05291v1)
Abstract: In this paper we examine the use of semantically-aligned speech representations for end-to-end spoken language understanding (SLU). We employ the recently-introduced SAMU-XLSR model, which is designed to generate a single embedding that captures the semantics at the utterance level, semantically aligned across different languages. This model combines the acoustic frame-level speech representation learning model (XLS-R) with the Language Agnostic BERT Sentence Embedding (LaBSE) model. We show that the use of the SAMU-XLSR model instead of the initial XLS-R model improves significantly the performance in the framework of end-to-end SLU. Finally, we present the benefits of using this model towards language portability in SLU.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.