Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fair and Efficient Multi-Resource Allocation for Cloud Computing (2210.05237v1)

Published 11 Oct 2022 in cs.GT

Abstract: We study the problem of allocating multiple types of resources to agents with Leontief preferences. The classic Dominant Resource Fairness (DRF) mechanism satisfies several desired fairness and incentive properties, but is known to have poor performance in terms of social welfare approximation ratio. In this work, we propose a new approximation ratio measure, called \emph{\fratio}, which is defined as the worst-case ratio between the optimal social welfare (resp. utilization) among all \emph{fair} allocations and that by the mechanism, allowing us to break the lower bound barrier under the classic approximation ratio. We then generalize DRF and present several new mechanisms with two and multiple types of resources that satisfy the same set of properties as DRF but with better social welfare and utilization guarantees under the new benchmark. We also demonstrate the effectiveness of these mechanisms through experiments on both synthetic and real-world datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.