Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

It Takes Two: Masked Appearance-Motion Modeling for Self-supervised Video Transformer Pre-training (2210.05234v1)

Published 11 Oct 2022 in cs.CV

Abstract: Self-supervised video transformer pre-training has recently benefited from the mask-and-predict pipeline. They have demonstrated outstanding effectiveness on downstream video tasks and superior data efficiency on small datasets. However, temporal relation is not fully exploited by these methods. In this work, we explicitly investigate motion cues in videos as extra prediction target and propose our Masked Appearance-Motion Modeling (MAM2) framework. Specifically, we design an encoder-regressor-decoder pipeline for this task. The regressor separates feature encoding and pretext tasks completion, such that the feature extraction process is completed adequately by the encoder. In order to guide the encoder to fully excavate spatial-temporal features, two separate decoders are used for two pretext tasks of disentangled appearance and motion prediction. We explore various motion prediction targets and figure out RGB-difference is simple yet effective. As for appearance prediction, VQGAN codes are leveraged as prediction target. With our pre-training pipeline, convergence can be remarkably speed up, e.g., we only require half of epochs than state-of-the-art VideoMAE (400 v.s. 800) to achieve the competitive performance. Extensive experimental results prove that our method learns generalized video representations. Notably, our MAM2 with ViT-B achieves 82.3% on Kinects-400, 71.3% on Something-Something V2, 91.5% on UCF101, and 62.5% on HMDB51.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.