Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Reliable Conditioning of Behavioral Cloning for Offline Reinforcement Learning (2210.05158v2)

Published 11 Oct 2022 in cs.LG and cs.AI

Abstract: Behavioral cloning (BC) provides a straightforward solution to offline RL by mimicking offline trajectories via supervised learning. Recent advances (Chen et al., 2021; Janner et al., 2021; Emmons et al., 2021) have shown that by conditioning on desired future returns, BC can perform competitively to their value-based counterparts, while enjoying much more simplicity and training stability. While promising, we show that these methods can be unreliable, as their performance may degrade significantly when conditioned on high, out-of-distribution (ood) returns. This is crucial in practice, as we often expect the policy to perform better than the offline dataset by conditioning on an ood value. We show that this unreliability arises from both the suboptimality of training data and model architectures. We propose ConserWeightive Behavioral Cloning (CWBC), a simple and effective method for improving the reliability of conditional BC with two key components: trajectory weighting and conservative regularization. Trajectory weighting upweights the high-return trajectories to reduce the train-test gap for BC methods, while conservative regularizer encourages the policy to stay close to the data distribution for ood conditioning. We study CWBC in the context of RvS (Emmons et al., 2021) and Decision Transformers (Chen et al., 2021), and show that CWBC significantly boosts their performance on various benchmarks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.