Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Actor-Critic Network for O-RAN Resource Allocation: xApp Design, Deployment, and Analysis (2210.04604v1)

Published 26 Sep 2022 in cs.NI, cs.AI, and cs.DC

Abstract: Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy RAN controllers. xApps are the applications which will take this responsibility by leveraging ML algorithms and acting in near-real time. Despite the opportunities provided by this new architecture, the progress of practical AI-based solutions for network control and automation has been slow. This is mostly because of the lack of an endto-end solution for designing, deploying, and testing AI-based xApps fully executable in real O-RAN network. In this paper we introduce an end-to-end O-RAN design and evaluation procedure and provide a detailed discussion of developing a Reinforcement Learning (RL) based xApp by using two different RL approaches and considering the latest released O-RAN architecture and interfaces.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.