Papers
Topics
Authors
Recent
2000 character limit reached

Data-driven framework for input/output lookup tables reduction: Application to hypersonic flows in chemical non-equilibrium (2210.04269v4)

Published 9 Oct 2022 in physics.flu-dyn and cs.LG

Abstract: In this paper, we present a novel model-agnostic machine learning technique to extract a reduced thermochemical model for reacting hypersonic flows simulation. A first simulation gathers all relevant thermodynamic states and the corresponding gas properties via a given model. The states are embedded in a low-dimensional space and clustered to identify regions with different levels of thermochemical (non)-equilibrium. Then, a surrogate surface from the reduced cluster-space to the output space is generated using radial-basis-function networks. The method is validated and benchmarked on a simulation of a hypersonic flat-plate boundary layer with finite-rate chemistry. The gas properties of the reactive air mixture are initially modeled using the open-source Mutation++ library. Substituting Mutation++ with the light-weight, machine-learned alternative improves the performance of the solver by 50% while maintaining overall accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.