Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Depersonalized Federated Learning: Tackling Statistical Heterogeneity by Alternating Stochastic Gradient Descent (2210.03444v3)

Published 7 Oct 2022 in cs.LG

Abstract: Federated learning (FL), which has gained increasing attention recently, enables distributed devices to train a common ML model for intelligent inference cooperatively without data sharing. However, problems in practical networks, such as non-independent-and-identically-distributed (non-iid) raw data and limited bandwidth, give rise to slow and unstable convergence of the FL training process. To address these issues, we propose a new FL method that can significantly mitigate statistical heterogeneity through the depersonalization mechanism. Particularly, we decouple the global and local optimization objectives by alternating stochastic gradient descent, thus reducing the accumulated variance in local update phases to accelerate the FL convergence. Then we analyze the proposed method detailedly to show the proposed method converging at a sublinear speed in the general non-convex setting. Finally, numerical results are conducted with experiments on public datasets to verify the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.