Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Unsupervised Cross-Lingual Word Embedding using Domain Flow Interpolation (2210.03319v1)

Published 7 Oct 2022 in cs.CL

Abstract: This paper investigates an unsupervised approach towards deriving a universal, cross-lingual word embedding space, where words with similar semantics from different languages are close to one another. Previous adversarial approaches have shown promising results in inducing cross-lingual word embedding without parallel data. However, the training stage shows instability for distant language pairs. Instead of mapping the source language space directly to the target language space, we propose to make use of a sequence of intermediate spaces for smooth bridging. Each intermediate space may be conceived as a pseudo-language space and is introduced via simple linear interpolation. This approach is modeled after domain flow in computer vision, but with a modified objective function. Experiments on intrinsic Bilingual Dictionary Induction tasks show that the proposed approach can improve the robustness of adversarial models with comparable and even better precision. Further experiments on the downstream task of Cross-Lingual Natural Language Inference show that the proposed model achieves significant performance improvement for distant language pairs in downstream tasks compared to state-of-the-art adversarial and non-adversarial models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube