Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Power of Greedy for Online Minimum Cost Matching on the Line (2210.03166v3)

Published 6 Oct 2022 in cs.DS

Abstract: We consider the online minimum cost matching problem on the line, in which there are $n$ servers and, at each of $n$ time steps, a request arrives and must be irrevocably matched to a server that has not yet been matched to, with the goal of minimizing the sum of the distances between the matched pairs. Despite achieving a worst-case competitive ratio that is exponential in $n$, the simple greedy algorithm, which matches each request to its nearest available free server, performs very well in practice. A major question is thus to explain greedy's strong empirical performance. In this paper, we aim to understand the performance of greedy over instances that are at least partially random. When both the requests and the servers are drawn uniformly and independently from $[0,1]$, we show that greedy is constant competitive, which improves over the previously best-known $O(\sqrt{n})$ bound. We extend this constant competitive ratio to a setting with a linear excess of servers, which improves over the previously best-known $O(\log3{n})$ bound. We moreover show that in the semi-random model where the requests are still drawn uniformly and independently but where the servers are chosen adversarially, greedy achieves an $O(\log{n})$ competitive ratio. When the requests arrive in a random order but are chosen adversarially, it was previously known that greedy is $O(n)$-competitive. Even though this one-sided randomness allows a large improvement in greedy's competitive ratio compared to the model where requests are adversarial and arrive in a random order, we show that it is not sufficient to obtain a constant competitive ratio by giving a tight $\Omega(\log{n})$ lower bound. These results invite further investigation about how much randomness is necessary and sufficient to obtain strong theoretical guarantees for the greedy algorithm for online minimum cost matching, on the line and beyond.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.