Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Volumetric Mesh Generator (2210.03158v1)

Published 6 Oct 2022 in cs.CV and cs.AI

Abstract: Deep generative models have shown success in generating 3D shapes with different representations. In this work, we propose Neural Volumetric Mesh Generator(NVMG) which can generate novel and high-quality volumetric meshes. Unlike the previous 3D generative model for point cloud, voxel, and implicit surface, the volumetric mesh representation is a ready-to-use representation in industry with details on both the surface and interior. Generating this such highly-structured data thus brings a significant challenge. We first propose a diffusion-based generative model to tackle this problem by generating voxelized shapes with close-to-reality outlines and structures. We can simply obtain a tetrahedral mesh as a template with the voxelized shape. Further, we use a voxel-conditional neural network to predict the smooth implicit surface conditioned on the voxels, and progressively project the tetrahedral mesh to the predicted surface under regularizations. The regularization terms are carefully designed so that they can (1) get rid of the defects like flipping and high distortion; (2) force the regularity of the interior and surface structure during the deformation procedure for a high-quality final mesh. As shown in the experiments, our pipeline can generate high-quality artifact-free volumetric and surface meshes from random noise or a reference image without any post-processing. Compared with the state-of-the-art voxel-to-mesh deformation method, we show more robustness and better performance when taking generated voxels as input.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.