Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Accelerated Single-Call Methods for Constrained Min-Max Optimization (2210.03096v2)

Published 6 Oct 2022 in math.OC, cs.GT, and cs.LG

Abstract: We study first-order methods for constrained min-max optimization. Existing methods either require two gradient calls or two projections in each iteration, which may be costly in some applications. In this paper, we first show that a variant of the Optimistic Gradient (OG) method, a single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ best-iterate convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality (MVI). Our second result is the first single-call single-projection algorithm -- the Accelerated Reflected Gradient (ARG) method that achieves the optimal $O(\frac{1}{T})$ last-iterate convergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that the Reflected Gradient (RG) method, another single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate for constrained convex-concave min-max optimization, answering an open problem of [Heish et al, 2019]. Our convergence rates hold for standard measures such as the tangent residual and the natural residual.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.