Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Explainable Verbal Deception Detection using Transformers (2210.03080v1)

Published 6 Oct 2022 in cs.CL

Abstract: People are regularly confronted with potentially deceptive statements (e.g., fake news, misleading product reviews, or lies about activities). Only few works on automated text-based deception detection have exploited the potential of deep learning approaches. A critique of deep-learning methods is their lack of interpretability, preventing us from understanding the underlying (linguistic) mechanisms involved in deception. However, recent advancements have made it possible to explain some aspects of such models. This paper proposes and evaluates six deep-learning models, including combinations of BERT (and RoBERTa), MultiHead Attention, co-attentions, and transformers. To understand how the models reach their decisions, we then examine the model's predictions with LIME. We then zoom in on vocabulary uniqueness and the correlation of LIWC categories with the outcome class (truthful vs deceptive). The findings suggest that our transformer-based models can enhance automated deception detection performances (+2.11% in accuracy) and show significant differences pertinent to the usage of LIWC features in truthful and deceptive statements.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.