Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State-of-the-art generalisation research in NLP: A taxonomy and review (2210.03050v4)

Published 6 Oct 2022 in cs.CL and cs.AI

Abstract: The ability to generalise well is one of the primary desiderata of NLP. Yet, what 'good generalisation' entails and how it should be evaluated is not well understood, nor are there any evaluation standards for generalisation. In this paper, we lay the groundwork to address both of these issues. We present a taxonomy for characterising and understanding generalisation research in NLP. Our taxonomy is based on an extensive literature review of generalisation research, and contains five axes along which studies can differ: their main motivation, the type of generalisation they investigate, the type of data shift they consider, the source of this data shift, and the locus of the shift within the modelling pipeline. We use our taxonomy to classify over 400 papers that test generalisation, for a total of more than 600 individual experiments. Considering the results of this review, we present an in-depth analysis that maps out the current state of generalisation research in NLP, and we make recommendations for which areas might deserve attention in the future. Along with this paper, we release a webpage where the results of our review can be dynamically explored, and which we intend to update as new NLP generalisation studies are published. With this work, we aim to take steps towards making state-of-the-art generalisation testing the new status quo in NLP.

Citations (75)

Summary

We haven't generated a summary for this paper yet.