Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Feature Importance for Mixed Data (2210.03047v3)

Published 6 Oct 2022 in stat.ML and cs.LG

Abstract: Despite the popularity of feature importance (FI) measures in interpretable machine learning, the statistical adequacy of these methods is rarely discussed. From a statistical perspective, a major distinction is between analyzing a variable's importance before and after adjusting for covariates - i.e., between $\textit{marginal}$ and $\textit{conditional}$ measures. Our work draws attention to this rarely acknowledged, yet crucial distinction and showcases its implications. Further, we reveal that for testing conditional FI, only few methods are available and practitioners have hitherto been severely restricted in method application due to mismatching data requirements. Most real-world data exhibits complex feature dependencies and incorporates both continuous and categorical data (mixed data). Both properties are oftentimes neglected by conditional FI measures. To fill this gap, we propose to combine the conditional predictive impact (CPI) framework with sequential knockoff sampling. The CPI enables conditional FI measurement that controls for any feature dependencies by sampling valid knockoffs - hence, generating synthetic data with similar statistical properties - for the data to be analyzed. Sequential knockoffs were deliberately designed to handle mixed data and thus allow us to extend the CPI approach to such datasets. We demonstrate through numerous simulations and a real-world example that our proposed workflow controls type I error, achieves high power and is in line with results given by other conditional FI measures, whereas marginal FI metrics result in misleading interpretations. Our findings highlight the necessity of developing statistically adequate, specialized methods for mixed data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kristin Blesch (5 papers)
  2. David S. Watson (12 papers)
  3. Marvin N. Wright (20 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.