Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Text-driven Video Prediction (2210.02872v1)

Published 6 Oct 2022 in cs.CV

Abstract: Current video generation models usually convert signals indicating appearance and motion received from inputs (e.g., image, text) or latent spaces (e.g., noise vectors) into consecutive frames, fulfilling a stochastic generation process for the uncertainty introduced by latent code sampling. However, this generation pattern lacks deterministic constraints for both appearance and motion, leading to uncontrollable and undesirable outcomes. To this end, we propose a new task called Text-driven Video Prediction (TVP). Taking the first frame and text caption as inputs, this task aims to synthesize the following frames. Specifically, appearance and motion components are provided by the image and caption separately. The key to addressing the TVP task depends on fully exploring the underlying motion information in text descriptions, thus facilitating plausible video generation. In fact, this task is intrinsically a cause-and-effect problem, as the text content directly influences the motion changes of frames. To investigate the capability of text in causal inference for progressive motion information, our TVP framework contains a Text Inference Module (TIM), producing step-wise embeddings to regulate motion inference for subsequent frames. In particular, a refinement mechanism incorporating global motion semantics guarantees coherent generation. Extensive experiments are conducted on Something-Something V2 and Single Moving MNIST datasets. Experimental results demonstrate that our model achieves better results over other baselines, verifying the effectiveness of the proposed framework.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube