Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Double-Encoder Network for RGB-D Panoptic Segmentation (2210.02834v2)

Published 6 Oct 2022 in cs.CV

Abstract: Perception is crucial for robots that act in real-world environments, as autonomous systems need to see and understand the world around them to act properly. Panoptic segmentation provides an interpretation of the scene by computing a pixelwise semantic label together with instance IDs. In this paper, we address panoptic segmentation using RGB-D data of indoor scenes. We propose a novel encoder-decoder neural network that processes RGB and depth separately through two encoders. The features of the individual encoders are progressively merged at different resolutions, such that the RGB features are enhanced using complementary depth information. We propose a novel merging approach called ResidualExcite, which reweighs each entry of the feature map according to its importance. With our double-encoder architecture, we are robust to missing cues. In particular, the same model can train and infer on RGB-D, RGB-only, and depth-only input data, without the need to train specialized models. We evaluate our method on publicly available datasets and show that our approach achieves superior results compared to other common approaches for panoptic segmentation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.