Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoQC: Automated Synthesis of Quantum Circuits Using Neural Network (2210.02766v1)

Published 6 Oct 2022 in cs.SE, cs.LG, and cs.PL

Abstract: While the ability to build quantum computers is improving dramatically, developing quantum algorithms is limited and relies on human insight and ingenuity. Although a number of quantum programming languages have been developed, it is challenging for software developers who are not familiar with quantum computing to learn and use these languages. It is, therefore, necessary to develop tools to support developing new quantum algorithms and programs automatically. This paper proposes AutoQC, an approach to automatically synthesizing quantum circuits using the neural network from input and output pairs. We consider a quantum circuit a sequence of quantum gates and synthesize a quantum circuit probabilistically by prioritizing with a neural network at each step. The experimental results highlight the ability of AutoQC to synthesize some essential quantum circuits at a lower cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.